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Review

The current prevalence of diabetes and obesity 
is unprecedented in the United States and 
abroad. Based on data from 2005–2008, 
25.6  million, or 11.3% of all people in 
the United States ≥ 20 years of age, have 
diagnosed or undiagnosed diabetes [Centers 
for Disease Control and Prevention (CDC) 
2011]. The total direct medical costs and 
indirect costs (disability, work loss, premature 
death) associated with diabetes in the United 
States during 2007 was $174 billion (CDC 
2011). Another 35% of people in this age 
category are estimated to have prediabetes, a 
condition where blood glucose is higher than 
normal but not high enough to be classified as 
diabetes. This condition is a predictor for the 
development of diabetes. Approximately 11% 
of people with prediabetes developed type 2 
diabetes each year during the average 3 years 
of follow-up in the Diabetes Prevention 
Program, a major clinical trial conducted to 
assess intervention strategies to prevent or 
delay the onset of diabetes in people with 
impaired glucose tolerance (American Diabetes 
Association 2011; Knowler et  al. 2002). 
Overweight and obesity are well-known risk 

factors for the development of type 2 diabetes, 
perhaps contributing to approximately 70% 
of cases (Eyre et al. 2004). The prevalence of 
obesity worldwide had doubled since 1980 
(World Health Organization 2011). In the 
United States, the prevalence of obesity among 
children and adolescents 2–19 years of age has 
almost tripled since 1980, and it is estimated 
that 16.9%, or 12.5 million, are obese (Ogden 
and Carroll 2010). This trend is also apparent 
in preschool children 2–5 years of age, where 
obesity increased from 5% in 1976–1980 to 
10.4% in 2007–2008 (Ogden and Carroll 
2010). Similarly, increased body weights have 
also been reported in pets and laboratory 
animals over the past decades (Klimentidis 
et al. 2010).

Excess caloric consumption and a sed-
entary lifestyle are well-recognized risk fac-
tors for obesity and diabetes. However, there 
is growing interest in the contribution of 
“nontraditional” risk factors (e.g., environ-
mental chemicals, stress, micronutrients, gut 
microbiome) to the etiology of these health 
conditions. Research addressing the role of 
environmental chemicals in diabetes and 

obesity has rapidly expanded in the past sev-
eral years. The White House Task Force on 
Childhood Obesity (2010), the National 
Institutes of Health (NIH 2011), and the 
National Institute of Diabetes and Digestive 
and Kidney Diseases (2011) all acknowledge 
the growing science base in this area and cite 
the need for research to improve understand-
ing of the role of environmental exposures in 
order to facilitate future prevention strategies. 
To help develop such a research strategy, the 
National Institute of Environmental Health 
Sciences (NIEHS) Division of the National 
Toxicology Program (NTP) organized a state-
of-the-science workshop in January 2011 
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Background: There has been increasing interest in the concept that exposures to environmental 
chemicals may be contributing factors to the epidemics of diabetes and obesity. On 11–13 January 
2011, the National Institute of Environmental Health Sciences (NIEHS) Division of the National 
Toxicology Program (NTP) organized a workshop to evaluate the current state of the science on 
these topics of increasing public health concern.

Objective: The main objective of the workshop was to develop recommendations for a research 
agenda after completing a critical analysis of the literature for humans and experimental animals 
exposed to certain environmental chemicals. The environmental exposures considered at the work-
shop were arsenic, persistent organic pollutants, maternal smoking/nicotine, organotins, phthalates, 
bisphenol A, and pesticides. High-throughput screening data from Toxicology in the 21st Century 
(Tox21) were also considered as a way to evaluate potential cellular pathways and generate hypoth-
eses for testing which and how certain chemicals might perturb biological processes related to diabe-
tes and obesity.
Conclusions: Overall, the review of the existing literature identified linkages between several of 
the environmental exposures and type 2 diabetes. There was also support for the “developmental 
obesogen” hypothesis, which suggests that chemical exposures may increase the risk of obesity by 
altering the differentiation of adipocytes or the development of neural circuits that regulate feed-
ing behavior. The effects may be most apparent when the developmental exposure is combined 
with consumption of a high-calorie, high-carbohydrate, or high-fat diet later in life. Research on 
environmental chemical exposures and type 1 diabetes was very limited. This lack of research was 
considered a critical data gap. In this workshop review, we outline the major themes that emerged 
from the workshop and discuss activities that NIEHS/NTP is undertaking to address research 
recommendations. This review also serves as an introduction to an upcoming series of articles that 
review the literature regarding specific exposures and outcomes in more detail.
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titled “Role of Environmental Chemicals in 
the Development of Diabetes and Obesity” 
to evaluate the literature for evidence of asso-
ciations between certain chemicals and risk 
of diabetes and/or obesity (NTP 2011b). 
The specific environmental exposures evalu-
ated were arsenic, maternal smoking during 
pregnancy/nicotine, organic tin compounds 
(“organotins”), phthalates, bisphenol A (BPA), 
pesticides, and various persistent organic pol-
lutants (POPs). A diverse group of more than 
50 scientists including endocrinologists, toxi-
cologists, epidemiologists, bioinformaticists, 
and experts in the pathobiology of diabetes 
and obesity were asked to evaluate the current 
literature for consistency and biological plau-
sibility, with the ultimate goal of providing 
advice to NIEHS for developing a research 
agenda on these emerging topics. Literature 
review documents, meeting presentations, and 
other background materials for the workshop 
are available online (NTP 2011b).

Overall, the existing literature was judged 
to provide plausibility, varying from sugges-
tive to strong, that exposure to environmental 
chemicals may contribute to the epidemic of 
diabetes and/or obesity. This workshop review 
provides an overview of the major themes 
emerging from the workshop and describes 
several activities that NIEHS is undertaking 
to address research recommendations. This 
review also serves as the announcement of an 
upcoming series of papers to be published in 
Environmental Health Perspectives describing 
in more detail the critical assessment of the lit-
erature provided by the workshop participants.

Methods
Workshop format. The workshop format was 
an introductory plenary session and a series of 
breakout group meetings, followed by plenary 
sessions to disseminate and discuss the findings 
from individual breakout group deliberations. A 
series of white papers was distributed before the 
workshop to help focus discussion. Breakout 
groups were not required to reach consensus 
on responses to charge questions, and plenary 
reports were prepared to reflect the range of 
opinions expressed. For the individual chemi-
cals or chemical classes, workshop participants 
were asked to a) evaluate the strength/weak-
nesses, consistency, and biological plausibility 
of findings reported in humans and experi-
mental animals; b) identify the most useful and 
relevant end points in experimental animals, 
in vitro models, and screening systems to assess 
these diseases; and c)  identify data gaps and 
areas for future evaluation/research. Data from 
the Toxicology in the 21st Century (Tox21) 
High-Throughput Screening (HTS) Initiative 
were also considered during the meeting.  
Experts used the data, primarily derived from 
phase I of the U.S. Environmental Protection 
Agency (EPA) ToxCast™ (U.S. EPA 2011a), 

to help evaluate biological plausibility as well 
as to develop testable predictions of which 
chemicals might perturb biological processes 
related to diabetes and obesity. Experts were 
also asked to suggest relevant assay targets that 
could be included in Tox21 in the future to 
better screen for perturbations of these biologi-
cal processes. Obesity is a major risk factor for 
metabolic syndrome and type 2 diabetes. All 
three outcomes were reviewed in relation to 
the environmental exposures evaluated during 
the workshop, although the primary focus and 
context varied for specific exposures.

Literature search strategy. A PubMed 
(National Library of Medicine, Bethesda, 
MD) search strategy was developed to iden-
tify studies of xenobiotic exposures related 
to diabetes and obesity using both a MeSH 
(Medical Subject Headings)-based strat-
egy and a keyword strategy [for a complete 
list of MeSH and keyword search terms, 
see Supplemental Material (http://dx.doi.
org/10.1289/ehp.1104597)]. The keyword 
search was included to identify newer articles 
that were not yet MeSH indexed in PubMed 
at the time of the search. Additional details 
about the criteria used to determine study rel-
evance will be presented in subsequent publi-
cations that focus on specific exposures.

Data extraction. Data extraction of the 
main findings from studies considered relevant 
was conducted by NTP staff in the Office of 
Health Assessment and Translation (OHAT). 
Identification of main findings was based on 
the following strategy. For studies that did not 
report a significant association between the 
exposure and a health outcome, data extraction 
for the main finding was based on the highest 
exposure group compared with the referent 
group (e.g., fourth quartile vs. first quartile). 
When a study reported a significant association 
between an exposure and a health outcome, 
the data extraction for the main finding was 
based on lowest exposure group where a statis-
tically significant association was observed and 
the shape of the exposure–response relation 
was monotonic (e.g., third quartile vs. first 
quartile). Identification of main findings when 
associations were nonmonotonic in nature 
was conducted on a case-by-case basis and 
included consideration of any statistical trend 
analyses that might have been conducted, con-
sistency of the overall pattern across exposure 
groups, and/or consideration of the author’s 
interpretation of the biological significance of 
the nonmonotonic finding.

An Excel file was used to store the data 
extraction output. This Excel file can be used 
in conjunction with a new graphical display 
software program called Meta Data Viewer 
developed by S. Harris at SRA International 
Inc. (Durham, NC, USA) and NTP OHAT 
staff (Boyles et al. 2011). In brief, the graph-
ing program allows users to sort, group, or 

filter studies according to exposures, health 
outcomes, and other characteristics and can 
present the main findings using a “forest plot” 
graphical display. The input data file for the 
diabetes/obesity workshop contains approxi-
mately 870 main findings from > 200 human 
studies. This software program was used dur-
ing the workshop to visually display data but 
was not used to conduct quantitative meta-
analyses. The graphing program, accompa-
nying data file, and instructions for use are 
publicly accessible (see NTP 2012; Boyles 
et al. 2011). Meta Data Viewer is a public 
resource, and users are welcome to use the 
program and any associated NTP data files for 
their own purposes, including for use in pub-
lications. Assistance in using the data file and 
software program is available upon request.

Major Findings 
Maternal smoking and nicotine. The strongest 
conclusion from the workshop was that nico-
tine likely acts as a developmental obesogen 
in humans. This conclusion was based on the 
very consistent pattern of overweight/obesity 
observed in epidemiology studies of children 
of mothers who smoked during pregnancy 
(Figure 1) and was supported by findings from 
laboratory animals exposed to nicotine during 
prenatal development. Crude and adjusted 
odds ratios (ORs) were similar within the indi-
vidual epidemiological studies, suggesting that 
the social and behavioral characteristics that 
were included in models did not account for 
the observed differences in the prevalence of 
overweight (Oken et al. 2008). Two recent 
meta-analyses concluded there was some evi-
dence for publication bias, but not enough 
to negate the overall conclusion of increased 
risk (Ino 2010; Oken et al. 2008). The body 
weight and adiposity-related changes reported 
in the animal studies recapitulated to a large 
extent those seen in children of mothers who 
smoke (Levin 2005; Newman et  al. 1999; 
Oliveira et al. 2009, 2010a, 2010b; Santos-
Silva et al. 2010, 2011; Somm et al. 2008; 
Williams and Kanagasabai 1984). The break-
out group recognized that other components 
in cigarette smoke may also be contributing 
to the association between maternal smoking 
and childhood overweight/obesity; however, 
the studies of nicotine in experimental animals 
provided compelling evidence that nicotine 
alone was the causal agent.

Arsenic. The breakout group participants 
that evaluated this literature concluded that 
the existing human data were limited to suf-
ficient in support of an association between 
arsenic and diabetes in populations with high 
exposure levels, namely, regions in Taiwan 
and Bangladesh with historical problems 
with arsenic contamination of drinking water 
(Figure 2). Although most members of the 
group considered the evidence sufficient for 
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an association, additional research is needed to 
determine whether the relationship is causal. 
Workshop participants concluded that current 
evidence was insufficient for an association 
with diabetes and arsenic in lower-exposure 
areas (< 150 ppb in drinking water), such as 
the United States and Mexico, although recent 
studies with better measures of exposure and 

outcome provided increased evidence for an 
association (Coronado-Gonzalez et al. 2007; 
Del Razo et al. 2011; Ettinger 2009).

The literature on arsenic and diabetes in 
experimental animals was judged inconclusive. 
The body of existing studies is highly diverse, 
with considerable variation in the duration 
of treatment (1 day to 2  years), routes of 

administration, and dose levels used in the 
studies. Most of the studies treated animals 
with sodium arsenite [As(III); arsenic trioxide], 
but other arsenicals have also been studied 
(Aguilar et al. 1997; Arnold et al. 2003; Hill 
et  al. 2009; Paul et al. 2008). The studies 
also vary in experimental design and model 
systems used to assess end points relevant to 

Figure 1. Association between maternal smoking during pregnancy and overweight/obesity in offspring. Studies are grouped by study design and then sorted 
by health outcome (overweight or obesity); studies are presented alphabetically by author within the health outcome categories. Abbreviations and symbols: 
♀, female; ♂, male; AK Nat, Alaskan native; ALSPAC, Avon Longitudinal Study of Parents and Children; Am Ind, American Indian; adj OR, adjusted odds ratio; 
BBC, British Birth Cohort; CI, confidence interval; CESAR, Central European Study on Air Pollution and Respiratory Health; CLASS, Children’s Lifestyle and School 
Performance study; CPP, Collaborative Perinatal Project; GDM, gestational diabetes mellitus; Gen R, Generation R study; OH, Ohio; MA, Massachusetts; milt serv, 
military service; nat’l, national; NCDS, National Child Development Study; NLSY, National Longitudinal Survey of Youth; PedNSS, Pediatric Nutrition Surveillance 
System; prev OR, prevalence odds ratio; WI, Wisconsin; WIC, Women, Infants, and Children program.
aRisk estimates for bracketed statistics (i.e., [crude prev OR]) calculated based on data presented in the paper using open source epidemiology statistics software OpenEpi (Dean et al. 2011).

Gorog et al. 2009 Europe (6 countries) CESAR, 9–12 year, ♂♀ (8,926) 1.26 (1.03, 1.55) 
Toschke et al. 2002 Germany (Bavaria) 5–6.9 year (1997), ♂♀ (8,365) 1.92 (1.29, 2.86) 
Toschke et al. 2003 Germany (Bavaria) 5–6 year (2001/2002), ♂♀ (4,974) 2.22 (1.33, 3.69) 
Toschke et al. 2007 Germany (Bavaria) 5–6 year (2001/2002), ♂♀ (5,472) 1.75 (1.25, 2.43) 
Von Kries 2002 Germany (Bavaria) 5–6.9 year, ♂♀ (6,483) 2.06 (1.31, 3.23) 
Von Kries 2008 Germany (Bavaria) 5–6.9 year, ♂♀ (5,899) 1.9 (1.3, 2.7) 
Ino et al. 2011 Japan (Kumagaya) 9–10 year, ♂♀ (2,508) 1.55 (0.67, 3.57) [crude prev OR]a

Koshy et al. 2011 UK (Merseyside) 5–11 year, ♂♀ (3,038) 1.61 (1.19, 2.18) 
Raum et al. 2011 Germany (Aachen) 6 year, ♂♀ (1,954) 1.51 (0.99, 2.28) 
Toschke et al. 2002 Germany (Bavaria) 5–6.9 year (1997), ♂♀ (8,365) 1.58 (1.23, 2.04) 
Toschke et al. 2003 Germany (Bavaria) 5–6 year (2001/2002), ♂♀ (4,974) 1.52 (1.14, 2.01) 
Toschke et al. 2007 Germany (Bavaria) 5–6 year (2001/2002), ♂♀ (5,472) 1.32 (1.10, 1.61) 
Von Kries 2002 Germany (Bavaria) 5–6.9 year, ♂♀ (6,483) 1.43 (1.07, 1.90) 
Von Kries 2008 Germany (Bavaria) 5–6.9 year, ♂♀ (5,899) 1.3 (1.1, 1.7) 

Al Mamun 2006 Australia (Brisbane, Queensland) 14 year, ♂♀ (3,253) 1.40 (1.01, 1.94) 
Bergmann et al. 2003 Germany (multisite) 6 year, ♂♀ (918) 2.3 (1.2, 4.6) 
Dubois and Girard 2006 Canada (Quebec) 4.5 year, ♂♀ (2,103) 1.8 (1.2, 2.8) 
Durmus et al. 2011 Netherlands (Gen R) 4 year, ♂♀ (5,342) 1.61 (1.03, 2.53) 
Montgomery and Ekbom 2002 UK (nat'l) NCDS, 33 year, ♂♀ (4,917) 1.38 (1.06, 1.79) 
Power and Jefferis 2002 UK (England, Scotland, Wales) 1958 BBC, 33 year, ♀ (2,921) 1.45 (1.13, 1.87) 
Power and Jefferis 2002 UK (England, Scotland, Wales) 1958 BBC, 33 year, ♂ (2,918) 1.55 (1.19, 2.00) 
Power et al. 2010 UK (England, Scotland, Wales) 1958 BBC, 45 year, ♂♀ (8,815) 1.40 (1.25, 1.56) 
Reilly et al. 2005 UK (multisite) ALSPAC 7 year, ♂♀ (7,758) 1.80 (1.01, 3.99) 
Rooney et al. 2010 USA (3 midwestern states) 9–14 year, ♂♀ (777) 2.15 (1.22, 3.78) 
Salsberry and Reagan 2005  USA (nat'l) NLSY Child-Mother, 6–7 year, ♂♀ (3,022) 1.74 (1.32, 2.29) 
Salsberry and Reagan 2007 USA (nat'l) NLSY Child-Mother, 12–13 year, ♂♀ (3,368) 1.41 (1.08, 1.84) 
Suzuki et al. 2009 Japan (Koshu City) 9–10 year, ♂♀ (1,644) 2.56 (1.02, 6.38) 
Al Mamun 2006 Australia (Brisbane, Queensland) 14 year, ♂♀ (3,253) 1.3 (1.1, 1.6) 
Bergmann et al. 2003  Germany (multisite) 6 year, ♂♀ (918) 2.08 (1.19, 3.63) 
Boerschmann et al. 2010  Germany (multisite) GDM offspring study 2 year, ♂♀ (1,420) 2.2 (0.6, 8.3) 
Boerschmann et al. 2010  Germany (multisite) GDM offspring study 11 year, ♂♀ (1,420) 22.7 (1.9, 2.8) 
Braun et al. 2010 USA (Cincinnati, OH) 3 year, ♂♀ (389) 1.9 (0.6, 6.1) 
Chen et al. 2006 USA (multisite) CPP 8 year, ♂ (14,486) 1.21 (1.05, 1.39) 
Chen et al. 2006 USA (multisite) CPP 8 year, ♀ (14,612) 1.37 (1.19, 1.58) 
Durmus et al. 2011 Netherlands (Gen R) 4 year, ♂♀ (5,342) 1.00 (0.78, 1.28) 
Gillman et al. 2008 USA (Boston, MA) Project Viva, 3 year, ♂♀ (1,110) 1.71 (0.90, 3.25) 
Iliadou et al. 2010 Sweden (nat'l) milt serv registry 17–24 year, ♂ (124,203) 1.41 (1.34, 1.49) 
Koupil and Toivanen 2008 Sweden (nat'l) registries, 18 year, ♂ (6,535) 1.71 (1.21, 2.43) 
Kuhle et al. 2010 Canada (Nova Scotia) CLASS 5th grade, ♂♀ (3,426) 1.43 (1.17, 1.75) 
Mizutani et al. 2007 Japan (Enzan City) Project Enzan, 5 year, ♂♀ (1,417) 2.15 (1.12, 4.11) 
Oken et al. 2005 USA (Boston, MA) Project Viva, 3 year, ♂♀ (2,218) 2.2 (1.2, 3.9) 
Tome et al. 2007 Brazil (Ribeirao) 8–10 year, ♂♀ (2,797) 1.07 (0.84, 1.37) 
Widerøe et al. 2003 Norway/Sweden (Trondheim/Bergen) 5 year, ♂♀ (482) 3.8 (2.1, 7.2) 

Sharma et al. 2008 USA (multisite) PedNSS (Asia/Pacific) 2–4 year, ♂♀ (4,740) 0.85 (0.35, 2.07) 
Sharma et al. 2008 USA (multisite) PedNSS (Am Ind/AK Nat) 2–4 year, ♂♀ (2,228) 1.01 (0.71, 1.44) 
Sharma et al. 2008 USA (multisite) PedNSS (Hispanic) 2–4 year, ♂♀ (34,378) 1.11 (0.95, 1.31) 
Sharma et al. 2008 USA (multisite) PedNSS (Black) 2–4 year, ♂♀ (31,704) 1.32 (1.17, 1.50) 
Sharma et al. 2008 USA (multisite) PedNSS (White) 2–4 year, ♂♀ (82,361) 1.59 (1.5, 1.68) 
Whitaker 2004 USA (Ohio) WIC, 4 year, ♂♀ (8,494) 1.21 (1.01, 1.45) 
Adams et al. 2005  USA (Wisconsin) Am Ind/WIC program, 3 year, ♂♀ (252) 2.16 (1.05, 4.47) 
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diabetes as a health effect. Most of the studies 
were not designed to examine the diabetogenic 
effects of chronic arsenic exposure. Although 
the literature as a whole was judged 
inconclusive, findings from recent studies that 
were designed to focus more specifically on 
glucose homeostasis appear consistent with 
those human studies that link arsenic exposure 
to diabetes. Supportive findings include 
impaired glucose tolerance in studies of mice 
or rats treated with As(III) for several months 
at drinking water concentrations from 5 to 
50 ppm (Cobo and Castineira 1997; Paul 
et  al. 2007, 2008; Wang et  al. 2009). In 
addition, measures of insulin regulation [e.g., 
homeostatic model assessment (HOMA) 
insulin resistance)] were affected in Wistar 
rats treated with 3.4 mg/kg body weight/day 
As(III) by oral gavage for 90 days (Izquierdo-
Vega et  al. 2006) and in pregnant female 
LM/Bc/Fnn mice treated with 9.6 mg/kg As(V) 
by intraperitoneal injection on gestational 
days 7.5 and 8.5 (Hill et al. 2009).

Most in  vitro or mechanistic studies 
were not designed specifically to study the 
diabetogenic or adipogenic effects of arsenic. 
Nevertheless, these studies suggest several 
pathways by which arsenic could influence 
pancreatic β-cell function and insulin sensitiv-
ity, including oxidative stress and effects on 
glucose uptake and transport, gluconeogenesis, 
adipocyte differentiation, and Ca2+ signaling 
(reviewed by Diaz-Villasenor et al. 2007, 2008; 
Druwe and Vaillancourt 2010; Tseng 2004). 
Studies suggest that arsenic may exert adverse 

effects on β-cell function in vitro through  
several mechanisms, depending on the con-
centration tested (Fu et al. 2010).

Epidemiological studies of POPs and dia-
betes. POPs comprise a broad class of organo-
halides (i.e., organochlorines, organofluorines, 
and organobromines). The POP literature 
related to diabetes and other metabolic disor-
ders is complex, consisting of approximately 75 
epidemiological studies that report hundreds 
of findings relating to diabetes, altered glucose 
homeostasis, insulin resistance, or metabolic 
syndrome. Often results for multiple POPs are 
reported in the same study. Because of time 
constraints at the workshop, breakout group 
participants focused on diabetes outcomes, 
although findings related to glucose homeosta-
sis, insulin resistance, and metabolic syndrome 
will be summarized in supplemental materi-
als that accompany the POPs breakout group 
report. The breakout group developed a quality 
rating for each study based primarily on the 
methods used to classify or measure exposure, 
and the diagnostic used to ascertain diabetes 
status. Studies received a lower rating if the 
diagnoses of diabetes came from death certifi-
cates, if diabetes was self-reported, if exposure 
was self-reported, or if exposure was not clearly 
measured. The breakout group then used the 
Meta Data Viewer program to assess patterns 
of association between various POPs chemicals 
or chemical classes and diabetes (Boyles et al. 
2011).

The group concluded that there is evi-
dence for a positive association of diabetes 

with certain organochlorine POPs. Initial 
data mining indicated the strongest associa-
tions of diabetes with trans-nonachlor, DDT 
(dichlorodiphenyltrichloroethane)/DDE 
(dichlorodiphenyldichloroethylene)/DDD 
(dichlorochlorophenylethane), and dioxins/
dioxin-like chemicals, including polychlori-
nated biphenyl (PCBs; Figure 3). In no case 
was the body of data considered sufficient to 
establish causality. The very strong exposure 
correlations among some POPs [correlation 
coefficients of 0.50–0.90 (Lee et al. 2006)] 
make it difficult to identify individual POPs as 
potential causal agents.

Peroxisome proliferator–activated receptor 
(PPAR) activators (organotins and phthalates). 
Organotins and phthalates were considered 
together in a breakout group session because 
these compounds both interact with PPARs. 
The PPARs are intimately involved in the reg-
ulation of adipocyte differentiation, produc-
tion of adipokines, insulin responsiveness, and 
other biological processes related to glucose 
and lipid regulation (Janesick and Blumberg 
2011; Kahn and McGraw 2010; Li et  al. 
2011; Wang 2010). In addition, there is the 
potential for coexposures to these two chemi-
cal classes because both are commonly used as 
plasticizers in PVC (polyvinylchloride) plas-
tics. The extent and magnitude of exposure are 
assumed to be higher for phthalates than for 
organotins, but exposure to organotins is not 
well characterized (Kannan et al. 2010).

The pattern of stimulatory activity for spe-
cific PPAR receptor subtypes varies between 

Figure 2. Association between arsenic and diabetes in areas of relatively high exposures (> 150 ppm drinking water). Studies are sorted by quality of the 
diagnostic from worse to better. Abbreviations: adj PR, adjusted prevalence ratio; As, arsenic; avg., average; CC, case–control; CEI, cumulative exposure index; 
CS, cross-sectional; FBG, fasting blood glucose; HEALS, Health Effects of Arsenic Longitudinal Study; OGTT, oral glucose tolerance test; Pros, prospective; Qn, 
quintile; Retro, retrospective; RR, relative risk; SMR, standardized mortality ratio; WA, Washington State.
aCalculated based on data presented using open source epidemiology statistics software OpenEpi (Dean et al. 2011) for Nabi et al. (2005) and Tsai et al. (1999) or as estimated by Navas-
Acien et al. (2006) for Tollestrup et al. (2003).

Relative risk
0.1 1 10 100

Lower 95th CI
Upper 95th CI
Relative riskReference Study description (n) Diagnostic

Relative risk
adj OR (95% CI) Exposure

Chen et al. 2010 Bangladesh (Araihazar) CS Self-report prior 1.11 (0.73, 1.69) 176.2–864 (Qn5) vs. 0.1-8 (Qn1) µg/L
 HEALS, ♂♀ (11,319) to baseline  (drinking water, CEI)

Tsai et al. 1999 Taiwan (Chiayi County) Retro  Death certificate 1.46 (1.28, 1.67) Blackfoot endemic region
 blackfoot region, ♂♀ (19,536 deaths)  SMRa vs. national reference

Tollestrup et al. 2003 USA (Ruston, WA) Retro, lived near Death certificate 1.6 (0.4, 7.2) ≥ 10 vs. < 1 year
 smelter as children, ♂♀ (1,074 deaths)  RRa  

Tseng et al. Taiwan (southwestern) Pros FBG, OGGT 2.1 (1.1, 4.2) ≥ 17 vs. < 17 mg/L-year
2000a, 2000b industrial region, ♂♀ (446)  RR (drinking water, CEI)

Wang et al. 2003 Taiwan (southwestern) CS Insurance claims 2.69 (2.65, 2.73) Endemic vs. 
 As endemic reg., ♂♀ (706,314)   nonendemic region

Nabi et al. 2005 Bangladesh (Chapainowabganj) CC Glucose, blood 2.95 (0.95, 9.28) 218.1 vs. 11.3 (avg) µg/L
 115 arsenicosis cases, ♂♀ (235)  ORa (drinking water)

Rahman et al. 1999 Bangladesh (multi-site) CS Glucosuria 2.9 (1.6, 5.2) > 10 vs. < 1 mg-year/L
 w/skin lesions, ♂♀ (134)  adj PR (drinking water, CEI)

Rahman et al. 1998 Bangladesh (Dhaka) CS Self-report, OGGT, 5.2 (2.5, 10.5) Keratosis vs.
 163 keratosis cases, ♂♀ (1,107) glucosuria adj PR non-keratosis

Lai et al. 1994 Taiwan (Southern) CS Self-report, OGGT, 10.1 (1.3, 77.9) ≥ 15 vs. 0 ppm-year
 As endemic region, ♂♀ (891) treatment history  (drinking water, CEI)
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the organotins [primarily tributyltin (TBT)] 
and individual phthalates, with the organo-
tins appearing to have a stronger mechanistic 
profile for inducing “obesogenic” effects. The 
organotins are potent agonists for PPARγ as 
well as retinoid X receptor-α (RXRα), two 
receptors known to promote adipocyte dif-
ferentiation in vitro when activated (Grun 
et al. 2006; Hiromori et al. 2009; Inadera 
and Shimomura 2005; Kanayama et al. 2005; 
le Maire et al. 2009; Nakanishi et al. 2005; 
Nishikawa et al. 2004). Because PPARγ and 
RXRα heterodimerize, organotins stimulate 
both parts of the heterodimer complex.

The phthalates are less potent activators 
of PPARγ than are organotins, with agonist 
activity occurring at concentrations 1,000 
times higher (~ 10–100 μM vs. ~ 10–100 nM), 
and phthalates have not been identified 
as agonists for RXRα. In contrast to the 
organotins, the phthalates are more potent 

agonists for PPARα than for PPARγ. The 
organotins are not considered activators of 
PPARα (Blumberg B, personal communica-
tion, 28 November 2010). In rodent models, 
PPARα appears to mediate high-dose di(2-
ethylhexyl) phthalate (DEHP)-induced body 
weight loss, but its role in regulating adipo-
genesis is less clear (Wang 2010).

Organotins. No epidemiological studies 
of organotin exposure and obesity or diabetes 
were identified during the literature search. 
There are poisoning incident reports, mostly in 
workers involved in applying the compounds 
for pesticide use, that describe incidents of 
hyperglycemia and/or glycosuria (Colosio 
et al. 1991; Manzo et al. 1981; reviewed by 
National Institute for Occupational Safety and 
Health 1976). Recent animal and mechanistic 
studies report stimulatory effects of TBT on 
adipocyte differentiation (in vitro and in vivo) 
and increased amount of fat tissue (i.e., larger 

epididymal fat pads) in adult animals exposed 
to TBT during fetal life (Grun and Blumberg 
2006; Hiromori et  al. 2009; Inadera and 
Shimomura 2005; Kanayama et  al. 2005; 
Kirchner et al. 2010; Nakanishi et al. 2005). 
In vitro effects of TBT include increased lipid 
accumulation in adipocytes and increased 
differentiation of multipotent stromal stem 
cells into adipocytes (Kirchner et al. 2010). 
Although the organotin “obesogen” literature 
is relatively new, with few studies, the quality 
of the existing experimental studies was con-
sidered high by the breakout group.

Phthalates. Three cross-sectional human 
studies of exposure to phthalates were dis-
cussed by the breakout group (Boas et al. 2010; 
Hatch et al. 2008; Stahlhut et al. 2007). These 
studies reported some positive associations but 
did not provide sufficient evidence to conclude 
there is an association with diabetes or obesity. 
Therefore, findings suggesting the possibility 

Lower 95th CI
Upper 95th CI
Relative risk

Rylander et al.  Sweden (national registry), CS PCB153 Self-report 1.06 (0.75, 1.5) 230 (110–810) [med (5th–95th), cases]
2005 fisherman’s wives, ♀ (184)    per 100 ng/g ↑ ng/g lipid (serum)

Jørgensen et al.  Greenland (west coast) Inuit, CS PCBs,  OGTT, FBG 1.2 (0.4, 3.2) Q4 vs. Q1
2008  ♂♀ (692) non-dioxin   ng/g lipid (plasma)

Jørgensen et al.  Greenland (west coast) Inuit, CS PCBs,  OGTT, FBG 1.2 (0.4, 3.6) Q4 vs. Q1
2008  ♂♀ (692) dioxin-like   ng/g lipid (plasma)

Rylander et al.  Sweden (national registry), CS PCB153 Self-report 1.20 (1.04, 1.39) 560 (360–1,600) [med (5th–95th), cases]
2005 fishermen, ♂ (196)    per 100 ng/g ↑ ng/g lipid (serum)

Ukropec et al. 2010 Slovakia (eastern, “polluted”), CS PCBs FBG 1.77 (1.05, 3.02) 1,341–2,330 (Q4) vs. 148–627 (Q1)
 ≥ 21 year, ♂♀ (2,047)    ng/g lipid (serum)

Turyk et al. 2009b USA (Great Lakes), CS PCBs Self-report,  1.9 (0.7, 5.2) 3.6–24.4 (Q4) vs. < 0.8 (Q1)
 fish eaters, ♂♀ (503)  HbA1c  ng/g (serum)

Turyk et al. 2009b USA (Great Lakes), CS PCBs,  Self-report,  2.1 (1.1, 4.2) 0.3–1.6 (T3) vs. < LOD (T1)
 fish eaters, ♂♀ (503) dioxin-like HbA1c   ng/g (serum)

Codru et al. 2007 USA (Akwesasne) Mohawks, CS PCB153 FBG, medication 2.4 (1.0, 5.6) 104.1 (T3) vs. 59.8 (T1)
 ♂♀ (352)    ng/g lipid (serum)

Lee et al. 2006 USA (NHANES 1999–2002) ≥ 20 year, CS PCB153 FBG, self-report 2.5 (1.1, 6) 14.3 (< 25th) vs. ND
 ♂♀ (2,106)    ng/g lipid (serum)

Uemura et al. 2008 Japan (multisite), CS PCBs,  Self-report,  3.07 (1.16, 8.81) ≥ 7.60 to < 13 vs. ≤ 7.60
 ♂♀ (1,374) dioxin-like HbA1c  pg TEQ/g lipid (serum)

Codru et al. 2007 USA (Akwesasne) Mohawks, CS PCBs FBG, medication 3.2 (1.4, 7.5) 756.2 (T3) vs. 448.6 (T1)
 ♂♀ (352)    ng/g lipid (serum)

Lee et al. 2010 USA (multisite) CARDIA, nested CC PCB153 FBG, medication 0.8 (0.2, 2.6) > 466 (Q4) vs. ≤ 204 (Q1)
 ≥ 18 year, ♂♀ (180)    pg/g (serum)

Rignell-Hydbom Sweden (Lund) WHILA, nested CC PCB153 OGTT 1.6 (0.61, 4) > 1,790 vs. ≤ 1,790
et al. 2009 ♀ (742)    pg/ml (serum)

Wang et al. 2008 Taiwan (Yucheng), nested CC PCBs Self-report 1.7 (0.7, 4.6) 99.4 vs. 53.9
 ≥ 30 year, ♂ (167)    ppb (serum)

Wang et al. 2008 Taiwan (Yucheng), nested CC PCBs Self-report 5.5 (2.3, 13.4) 121.4 vs. 72.6
 ≥ 30 year, ♀ (244)    ppb (serum)

Vasiliu et al. 2006 USA (Michigan) PBB cohort, Pros PCBs Self-report 1.74 (0.91, 3.34) > 10 vs. ≤ 5.0
 ♂ (688)   IDR ng/mL (serum)

Turyk et al. 2009a USA (Great Lakes), Pros PCBs Self-report 1.8 (0.6, 5) 4.3–29.8 (T3) vs. < 1.6 (T1)
 fish eaters, ♂♀ (471)   IRR ng/g ww (serum)

Vasiliu et al. 2006 USA (Michigan) PBB cohort, Pros PCBs Self-report 2.04 (1.10, 3.78) 5.1–7.0 vs. ≤ 5.0
 ♀ (696)   IDR ng/mL (serum)
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Figure 3. Association between PCBs and diabetes. Studies are grouped by study design and then sorted alphabetically by first author within each study design 
category. Abbreviations: CARDIA, Coronary Artery Risk Development in Young Adults; CS, cross-sectional; FBG, fasting blood glucose; IDR, incidence density 
ratio; IRR, incidence rate ratio; LOD, limit of detection; med, median; MI, Michigan; ND, not detected; NHANES, National Health and Nutrition Examination Survey; 
PBB, polybrominated biphenyl; Q, quartile; T, tertile; TEQ, toxic equivalency; WHILA, Women’s Health in the Lund Area; ww, wet weight.
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of sex differences in associations and different 
effects of individual phthalates were consid-
ered preliminary. In these studies, the urinary 
phthalate metabolite monoethyl phthalate was 
the phthalate metabolite most often associated 
with higher body mass index (BMI) (Hatch 
et al. 2008), waist circumference (Stahlhut 
et al. 2007), or HOMA (Stahlhut et al. 2007). 
Mono-2-ethylhexyl phthalate was associated 
with decreased BMI in females > 12 years of 
age (Hatch et al. 2008).

Understanding differences in PPARα 
activity between humans and rodents is impor-
tant with respect to understanding poten-
tial effects of phthalates on body weight and 
metabolic end points. Phthalate monoester 
metabolite concentrations required to activate 
human PPARα are two to three times higher 
than the concentrations required to acti-
vate mouse PPARα, and the maximum-fold 
induction is less for human PPARα than for 
mouse PPARα (Bility et al. 2004; Hurst and 
Waxman 2003; Maloney and Waxman 1999). 
Animals treated with relatively high doses of 
phthalates such as DEHP typically display 
decreased body weight and fat mass (Itsuki-
Yoneda et al. 2007; Sakurai et al. 1978). These 
effects were not observed in PPARα-knockout 
mice (Feige et al. 2010), which suggests they 
are largely mediated via the PPARα agonist 
activities of DEHP metabolites (Feige et al. 
2010; Martinelli et al. 2010). However, when 
the normal mouse PPARα gene was replaced 
with the human PPARα gene, mice treated 
with DEHP gained weight and had increased 

epididymal white adipose mass compared with 
wild-type animals (Feige et al. 2010). PPARγ 
activity is similar in rodents and humans, but 
stronger PPARα activity in mice compared 
with humans may mask effects mediated 
through PPARγ.

BPA. Overall, this breakout group con-
cluded that the existing data, primarily based 
on animal and in vitro studies, are suggestive 
of an effect of BPA on glucose homeostasis, 
insulin release, cellular signaling in pancreatic 
β cells, and adipogenesis (Alonso-Magdalena 
et al. 2010; Miyawaki et al. 2007; Ryan et al. 
2010; Somm et al. 2009). The existing human 
data on BPA and diabetes (Lang et al. 2008; 
Melzer et al. 2010) available at the time of the 
workshop were considered too limited to draw 
meaningful conclusions. Similarly, data were 
insufficient to evaluate BPA as a potential risk 
factor for childhood obesity: Only one pilot 
study was available at the time of the workshop 
(Wolff et al. 2008).

It was not possible to reach clear conclu-
sions about BPA and obesity from the existing 
animal data. Although several studies report 
body weight gain after developmental expo-
sure, the overall pattern across studies is incon-
sistent. However, breakout group participants 
emphasized that body weight is not consid-
ered a good measure of obesity in rodents and 
noted that only a few studies have assessed 
obesity using the preferred metrics such as fat 
mass, fat pad weight, and cell adipose tissue 
cellularity. There is inconsistency in the in vivo 
findings that may relate to differences in 

experimental designsuch as differences in diet, 
route of administration, and species/strain. 
Understanding the basis for these inconsisten-
cies was considered a research priority. The 
group also noted that the mechanisms of BPA 
action are not fully understood but extend 
beyond its activity as an estrogen receptor 
agonist. A number of in vitro findings sug-
gest interactions with other receptor systems 
involved in metabolic regulation (Wetherill 
et al. 2007), including anti-androgen effects at 
low concentrations and high binding affinity 
for estrogen-related receptor-γ (Takayanagi 
et al. 2006).

Pesticides. The pesticide breakout group 
concluded the epidemiological, animal, and 
mechanistic data support the biological plau-
sibility that exposure to multiple classes of 
pesticides may affect risk factors for diabe-
tes and obesity, although many significant 
data gaps remain. Some active ingredients of 
pesticides, and of insecticides in particular, 
affect neurotransmitter and/or ion channel 
systems that are also involved in regulating 
pancreatic function, including acetylcholine 
(e.g., organophosphate, carbamate, neonico-
tinoids), sodium channels (e.g., pyrethroids), 
γ-aminobutyric acid (e.g., organochlorine), 
catecholamine (e.g., amidine/formamidine), 
and mitochondrial function (e.g., rotenone). 
This raises the possibility that these com-
pounds might affect glucose homeostasis, at 
least at dose levels where they are effective 
as pesticides (Franklin and Wollheim 2004; 
Satin and Kinard 1998). Much less research 

Table 1. Selected results from ToxRefDB search for chemicals that caused increased body weight, increased blood glucose, or pancreatic effects.

Doses tested 
(mg/kg-day)

Effect doses (mg/kg-day)

Chemical class/ 
Chemical name (CASR number)

↑ Body 
weight

Pancreatic pathology 
or neoplasiaStudy design Lowest Highest ↑ Glucose Reference

Imidazole
Imazalil (35554-44-0) SUB, rat, feed 1.25 60  3.75  Lina et al. 1983
Imazalil (35554-44-0) CHR, mouse, feed 6.67 110   88 Verstraeten 1993
Triflumizole (68694-11-1) CHR, rat, feed 3.5 77   59.4 Broadmeadow et al. 1984

Inorganic
Cyanamide (420-04-2) CHR, rat, gavage/ intubation 1 7.5 7.5   Osheroff 1991

Organophosphate
Azamethiphos (35575-96-3) CHR, mouse, feed 6.2 614.3   614 Goodyer 1987
Dichlorvos (62-73-7) CHR, rat, gavage/ intubation 4 8   8 Chan 1987
Dimethoate (60-51-5) CHR, rat, feed 0.05 5    1.25 Squire 1988
Disulfoton (298-04-4) CHR, mouse, feed 0.15 2.4 2.4   Mobay Chemical Corporation 1983
Fenthion (55-38-9) CHR, mouse, feed 0.03 10.63 1.95   Leser and Suberg 1990
Fenthion (55-38-9) MGR, rat, feed 0.05 5 5   Kowalski et al. 1989
Malathion (121-75-5) CHR, rat, feed 4 868   29 Daly 1996
Parathion-methyl (298-00-0) CHR, mouse, feed 0.2 13.7 9.2   Eiben 1991
Propetamphos (31218-83-4) CHR, rat, feed 0.376 7.602   0.689, 7.6 Luginbuehl 1980
Tebupirimfos (96182-53-5) CHR, mouse, feed 0.52 43.57 38.8 38.8  Eiben 1990
Tebupirimfos (96182-53-5) SUB, rat, feed 0.2 4.9  0.4  Eiben 1989
Tribufos (78-48-8) CHR, mouse, feed 1.64 63.04 48   Hayes 1989

Sulfonylurea
Oxasulfuron (144651-06-9) CHR, rat, feed 0.84 871 425 Pettersen and Morrissey 1996
Sulfosulfuron (141776-32-1) CHR, rat, feed 2.4 1296.5   244 Naylor and Ruecker 1997
Triasulfuron (82097-50-5) SUB, rat, feed 10 1,000  1,000  Tai 1985
Tribenuron-methyl (101200-48-0) CHR, rat, feed 1.25 62.5   62.5 Tobia 1987

Abbreviations: CASR, Chemical Abstracts Service Registry; CHR, chronic; MGR, multigenerational; SUB, subchronic. The complete list can be found online (NTP 2011b; see appendix B 
in “Draft Literature Review Documents” for pesticides).
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has focused on whether pesticides have activi-
ties that might affect adiposity or other com-
ponents for metabolic syndrome.

Case reports of hyperglycemia have been 
reported after poisoning incidents with a 
variety of pesticides, perhaps best docu-
mented for organophosphates (Agency for 
Toxic Substances and Disease Registry 1997; 
Sungur and Guven 2001) and the formami-
dine insecticide amitraz (Caksen et al. 2003; 
Elinav et al. 2005; Ertekin et al. 2002; Kennel 
et al. 1996; Ulukaya et al. 2001; Yilmaz and 
Yildizdas 2003). Type 1 diabetes is a recog-
nized complication after accidental poisoning 
with the banned rodenticide Vacor (Gallanosa 
et al. 1981; Karam et al. 1980; Miller et al. 
1978; Mindel 1986; Peters et al. 1981; Pont 
et al. 1979; Prosser and Karam 1978; Yoon 
1990). Vacor is structurally similar to strepto-
zotocin, a compound widely used to induce 
experimental diabetes in animals. With the 
exception of studies of persistent organochlo-
rine pesticides such as DDT/DDE or trans-
nonachlor, there are very few cohort studies of 
other pesticides and health conditions related 
to diabetes, metabolic syndrome, or adiposity.

There have been numerous reports of 
intoxication with organophosphate insecticides 

on blood glucose in laboratory animals, gen-
erally finding hyperglycemia at high dose 
levels (see reviews by Karami-Mohajeri and 
Abdollahi 2010; Rahimi and Abdollahi 
2007). Recently, the focus of investigations 
has shifted toward studies designed to under-
stand the consequences of developmental 
exposure to lower doses of organophosphates, 
and the long-term effects of these exposures 
on metabolic dysfunction, diabetes, and obe-
sity later in life (Adigun et al. 2010a, 2010b, 
2010c; Icenogle et al. 2004; Lassiter et al. 
2008, 2010; Levin et al. 2002; Roegge et al. 
2008; Slotkin et al. 2005, 2009; reviewed by 
Slotkin 2010). The general findings are that 
early-life exposure to otherwise subtoxic levels 
of organophosphates results in prediabetes, 
abnormalities of lipid metabolism, and pro-
motion of obesity in response to increased 
dietary fat.

The EPA Toxicity Reference Database 
(ToxRefDB; U.S. EPA 2011b), was also used 
as a resource for the pesticide breakout group. 
The current version of the ToxRefDB contains 
detailed study and effect information on 474 
chemicals, primarily the data-rich pesticide 
active ingredients. Many of these studies were 
conducted for regulatory purposes and are 

not available in the peer-reviewed literature. 
ToxRefDB was queried for chemicals that 
caused increased body weight (or body weight 
gain), increased blood glucose, and pancreatic 
effects, including changes in mass, adenomas, 
atrophy, congestion, hyperplasia, hypertro-
phy, inflammation, fatty change, degenera-
tion, and cellular infiltration. Approximately 
100 chemicals were causes of at least one of 
these effects (see NTP 2011b, appendix B). 
Six of the studies identified increased body 
weight as a result of treatment with several 
organophosphates, including two separate 
studies for fenthion, one conducted in rats 
and the other in mice (Table 1). Several sul-
fonylurea herbicides and imidazole fungicides 
were also identified by the ToxRefDB search. 
These pesticides belong to the same gen-
eral chemical class as agents used to manage 
type 2 diabetes or that are being investigated 
as potential therapeutic agents.

Use of Tox21 HTS to Identify 
Substances of Potential Interest
Consideration of data from the Tox21 HTS 
Initiative played a prominent role in the 
workshop. Tox21 is a collaborative program 
between the U.S. EPA, NIEHS/NTP, NIH 

Table 2. Research recommendations for health outcome assessment measures.

Humans Animal and mechanistic models

Diabetes Obesity Diabetes Obesity
Use accepted diagnostic criteria
Other relevant end points: plasma insulin, 

insulin tolerance, insulin resistance, and 
β-cell function (i.e., HOMA)

Not recommended: glucosuria and 
documentation of diabetes only through 
death certificates

Use accepted diagnostic criteria
Other relevant end points: adipose 

deposition and distribution (MRI, 
DXA, and NMR), bone density end 
points for PPARγ-active compounds

Use fasting and fed blood glucose and 
insulin, GTT, ITT, insulin resistance 
(i.e., HOMA), insulin signaling pathways 
(peripheral and β cell)

Not recommended: glucosuria

Measure adipose deposition and 
distribution (fat mass, fat pads), 
adipocyte cellularity, feeding behavior, 
energy balance, brain and peripheral 
inflammation, neurohumural signaling, 
body weight, body length, bone density 
end points for PPARγ-active compounds

Table 3. Factors to consider for interactions, effect modification, and potential confounding.

Humans Animal and mechanistic models
Age, BMI, sex, physical activity, socioeconomic variables, food consumption/dietary 

intake, smoking status, concurrent medication (e.g., statins, metformin), significant 
exposures to other agents, measure of health status including kidney function and 
recent weight changes

Developmental studies: maternal BMI, maternal weight gain during pregnancy, 
maternal age, maternal diabetes (gestational or type 2), maternal diet, parental 
smoking, infant diet (breast-feeding vs. formula feeding), introduction of food 
during nursing period, childhood diet, childhood physical activity

Postnatal diet and dietary factors, including high-fat diet challenges
Animal models: consider species and strain differences (e.g., chemical-specific pharma-

cokinetics, PPARα and other receptors in rodent and human), disease state of interest 
(type 1 or type 2 diabetes), genetic diversity of the model

Table 4. Diagnostic criteria for human studies (BMJ Group 2011).

Diabetes mellitus, type 2 Prediabetes Overweight/obese adults Overweight/obese children
Random PG level ≥ 11.1 mmol/L (200 

mg/dL) in the presence of symptoms 
of hyperglycemia

FPG glucose ≥ 7.0 mmol/L (126 mg/dL)
2-hr PG level ≥ 11.1 mmol/L (200 

mg/dL) during OGTT with 75 g oral 
glucose load

HbA1c ≥ 6.5%

FPG 5.6–6.9 mmol/L (100–125 mg/dL)
2-hr postload glucose after 75 g 

oral glucose of 7.8–11.0 mmol/L 
(140–199 mg/dL)

HbA1c of 5.7–6.4% indicates 
prediabetes or high risk of future 
diabetes

BMI
Overweight: BMI 25.0–29.9
Obese: BMI 30.0–39.9
Extremely or morbidly obese: BMI ≥ 40.0

Waist circumference
Men, > 102 cm; Women, > 88 cm

Waist:height ratio 
Men: ideal, 0.9; increased risk, > 1.0
Women: ideal, 0.7; increased risk, > 0.85

BMI
Overweight: BMI 85th to 94th percentile 

(children > 2 years of age)
Obese: BMI ≥ 95th percentile (children 

> 2 years of age) or weight ≥ 95th percentile 
for height (children < 2 years of age)

Other diagnostic factors
Increased waist circumference, increased 

waist:hip ratio, increased skinfold thickness

Abbreviations: DXA, dual-emission X-ray absorptiometry; FPG, fasting plasma glucose; GTT, glucose tolerance test; ITT, insulin tolerance test; MRI, magnetic resonance imaging; NMR, 
nuclear magnetic resonance; PG, plasma glucose.
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Chemical Genomics Center, and U.S. Food 
and Drug Administration (FDA) designed 
to research, develop, validate, and translate 
innovative chemical testing methods that 
characterize toxicity pathways (NTP 2011a). 
Data from phase I of ToxCast™, U.S. EPA’s 
contribution to Tox21 (U.S. EPA 2011a), 
were used to help determine the biological 
plausibility of reported effects and to iden-
tify chemicals that may interact with relevant 
mechanistic targets but have not been assessed 
for effects related to diabetes or obesity. In 
general, the ToxCast™ data often aligned with 
mechanistic findings in the peer-reviewed lit-
erature. For example, the organotin fentin was 
identified in ToxCast™ as a target for PPARγ 
at a relatively low concentration (U.S. EPA 
2011a; search for “fentin”). Amitraz, a forma-
midine insecticide, is an α2-adrenoreceptor 
agonist (Chen and Hsu 1994; Hugnet et al. 
1996; Smith et al. 1990), and this activity 
was identified in ToxCast™ (U.S. EPA 2011a; 
search for “amitraz”).

Many of the pesticides identified from 
ToxRefDB as causes of increased body weight, 
increased blood glucose, or pancreatic effects 
were also screened in phase I of ToxCast™, 
providing clues regarding potential mecha-
nisms that may underlie the in vivo effects. 
Preliminary analysis of these results indicates 
that many pesticides have HTS “hits” that 
are unrelated to their classic pesticide mecha-
nism of action but may be relevant to biologi-
cal processes relevant to glucose homeostasis, 
insulin sensitivity, adipocyte differentiation, 
and lipid metabolism. However, the chemi-
cals or chemical classes that have been most 
strongly or consistently associated with dia-
betes or obesity in humans (trans-nonachlor, 
2,3,7,8-tetrachlorodibenzo-p-dioxin, DDT/
DDE/DDD, PCBs, arsenic, nicotine) have 
not yet been screened in ToxCast™.

Data from phase I of ToxCast™ were also 
used to develop testable predictions of which 
chemicals might perturb biological processes 
related to diabetes and obesity. In brief, 
workshop participants identified relevant 
HTS targets for several biological processes 
related to diabetes and obesity (insulin signal-
ing, islet cell function, adipocyte differentia-
tion, and feeding behavior in Caenorhabditis 
elegans). The 309 chemicals tested in phase I 
of ToxCast™, primarily pesticide active ingre-
dients, were then screened against these tar-
gets to identify a set of chemicals predicted to 
perturb these processes and others predicted 
to have no effect. As a follow-up activity, the 
NTP is initiating a targeted testing activity for 
a set of predicted “positives” and “negatives” 
using more physiologically based in  vitro 
model systems. Experts also suggested biologi-
cal assay targets that could be added to Tox21 
to improve the ability to identify chemicals 
that may perturb metabolic processes.

Conclusions, Research 
Recommendations, and 
Next Steps

Overall, the workshop review of the existing  
literature supports the plausibility of the “obe-
sogen” hypothesis, as well as linkages between 
type 2 diabetes and exposures to certain chemi-
cal classes. A review of the literature indicates 
very little research has been directed toward 
understanding associations between environ-
mental exposures and type 1 diabetes. This was 
considered a critical data gap. Many research 
questions remain, and an important goal of this 
workshop was to identify data gaps to stimulate 
focused research to move the field forward. The 
research recommendations included sugges-
tions for the most appropriate end points to 
evaluate in human, animal, and mechanistic 
studies of diabetes and obesity (Tables 2–4). All 
of the breakout groups highlighted the impor-
tance of using clinically accepted measures of 
diabetes and overweight/obesity in the epide-
miological studies (Table 4). Understanding 
more about the different phenotypes of obesity 
will require more sophisticated measurement 
methods because the distribution of adipose 
tissue can vary among individuals with the 
same BMI and waist circumference. Another 
series of recommendations was to elucidate the 
role(s) of effect modifiers, confounding factors, 
and specific genetic contributions in humans 
and animal models used to study these diseases 
(Table 3).

Many of the research gaps were not unique 
to the field of diabetes/obesity research. The 
workshop noted a) deficiencies in data on 
human exposures to many of the chemicals 
examined, b) the need for better biomarkers 
of exposure that may be related mechanisti-
cally to the disease end points, c)  the need 
for a better understanding of the basic biol-
ogy of adipocytes, β cells, and neural circuits 
that regulate feeding behavior in healthy and 
disease states, and d) the need for an appre-
ciation of how the biology that controls body 
weight and metabolic set points changes with 
life stage. A number of the breakout groups 
noted the need to consider nonmonotonic 
dose–response relationships for environmental 
influences on obesity and diabetes. Also, there 
is a need to consider coexposures between 
environmental chemicals and consumption of 
high-calorie, high-carbohydrate, and/or high-
fat diets. Finally, workshop participants found 
the incorporation of HTS information from 
the Tox21 program to be an intriguing and 
useful way of improving our understanding 
of the similarities and differences in biological 
actions across classes of chemicals and recom-
mended many specific targets for further assay 
development to further enhance its utility.

NIEHS has already taken steps to address 
some of the research needs, recognizing that 

the work will best be accomplished through 
the combined efforts of the NTP, the NIEHS 
Division of Extramural Research and Training 
(DERT), and the NIEHS Division of 
Intramural Research. Based on the results of 
this workshop and the data gaps noted, the 
DERT released program announcements 
focused on improving our understanding of the 
role of environmental exposures in the devel-
opment of obesity and diabetes (see NIEHS 
2011a, 2011b). The announcements have one 
receipt date per year for the next 3 years. The 
NTP is organizing further in vitro targeted 
testing of some of the predictions of chemical 
effects from the Tox21 screening program and 
is specifically developing an analytical method 
to measure organotins in human blood because 
the lack of exposure data to these compounds 
was considered a critical research need.

We hope this workshop will stimulate fur-
ther research to better understand the public 
health impacts of environmental influences on 
the increasing international prevalence of dia-
betes, obesity, and metabolic syndrome. We 
acknowledge the dedicated efforts of the work-
shop participants toward achieving this goal.
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